Identification of 1- and 10-Methylperhydrotriquinacene in Tricycloundecane Rearrangement Products

Yoshiaki Inamoto,* Koji Aigami, Yoshiaki Fujikura, Naotake Takaishi, and Kiyoshi Tsuchihashi

Tochigi Research Laboratories, Kao Soap Company, Ltd., 2606 Akabane, Ichikaimachi, Tochigi 321-34, Japan

Received August 4, 1978

Trifluoromethanesulfonic acid catalyzed skeletal rearrangement of exo-cis-2,3-tetramethylenenorbornane (tricyclo[6.2.1.0 $0^{2,7}$]undecane (1)) has been shown to afford a complex mixture of products. ${ }^{1}$ Sixteen compounds were recognized in this mixture upon examination on Golay column GC-MS, while conventional VPC separated them into eight fractions. The first-eluted fraction (fraction A) consisted of three compounds denoted as unknowns $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3}. We assigned on ${ }^{13} \mathrm{C}$ NMR spectroscopic evidences the structure of [3.3.3]propellane (tricyclo[3.3.3.01,5] undecane (2)) to A_{2} and 7- and 1-methylisotwistane (7- and 1-methyltricyclo[4.3.1.0 $0^{3,7}$]decane) to A_{1} and A_{3}, respectively. In connection with our progressing study on "local" pathways of the tricycloundecane rearrangement, isomerization of fraction A was examined. Preliminary experiments showed that unknown A_{1} and A_{3} were transformed relatively fast into 1- and 2-methyladamantane, whereas A_{2} (2) rearranged rather sluggishly. This fact made possible the isolation of the propellane 2 from fraction A. The propellane thus isolated showed a different ${ }^{13} \mathrm{C}$ NMR spectrum from that described in the previous report. ${ }^{1}$ The result necessarily led us to find the methylisotwistane structures for A_{1} and A_{3} to be in error. Now the correct methylperhydrotriquinacene structures (3 and 4) are assigned to them and these structure determinations are established by an independent synthesis.

Isomerization of a sample of fraction A, consisting of 34.3% $\mathrm{A}_{1}, 18.7 \% \mathrm{~A}_{2}(2)$, and $47.0 \% \mathrm{~A}_{3}$, for 16 h in the presence of 4 molar equiv of trifluoromethanesulfonic acid in methylene chloride as solvent at reflux gave a mixture comprising 18.5%

2, 33.2\% 1-methyladamantane, 44.8\% 2-methyladamantane, 0.5 and 2.2% unreacted A_{1} and A_{3}, respectively, and 0.8% of an unknown compound. The propellane was thus quite unreactive under these reaction conditions. ${ }^{2}$ The reaction mixture was fractionated on a preparative VPC to afford the first-eluted fraction containing $85.6 \% 2,1.9 \% \mathrm{~A}_{1}$, and $8.5 \% \mathrm{~A}_{3}$. Slow sublimation gave a sample of 2 with 94% purity in 0.97% yield based on 1 . Its ${ }^{13} \mathrm{C}$ NMR chemical shifts (Table I) and three major peaks of the mass spectrum were in good agreement with those ${ }^{3}\left(\delta_{\mathrm{C}} 24.61,40.33,60.38\right.$, and $\left.m / e 150,107,79\right)$ of an authentic specimen prepared by Alder. In turn, the three ${ }^{13} \mathrm{C}$ NMR signals are consistent with the structure of $C_{3 h}$ symmetry (2) determined by an empirical force field calculation. ${ }^{4}$ This characteristic molecular structure is also reflected in its mass spectrum, only three major peaks being found, as referred to above. The present isolation offers a convenient method of preparing [3.3.3]propellane which otherwise would be obtainable only via elaborate synthetic routes. ${ }^{5}$

Samples of fraction A were eluted through the preparative VPC column, and the former one-third portions of the peaks were collected. The fractions collected in this way were again fractionated, in the same way, to effect further concentration of A_{1}. The combined fractions thus obtained comprised 86.8% $\mathrm{A}_{1}, 10.0 \% 2$, and $3.2 \% \mathrm{~A}_{3}$. This mixture gave a ${ }^{13} \mathrm{C}$ NMR spectrum consisting of six signals. Two of them ($\delta_{C} 24.57(t)$ and $40.32(\mathrm{t})$) with low relative intensities agreed with those of 2 . The third signal of $2\left(\delta_{\mathrm{C}} 60.33(\mathrm{~s})\right)$, arising from the quaternary carbon atoms, was too weak to be detected. It also seems probable to believe that all the signals of A_{3} were hidden in the background noise because of low concentration. The remaining four signals for the mixture ($\delta_{\mathrm{C}} 28.25$ ($\mathrm{q}, 1$), 31.50 $(\mathrm{t}, 6), 52.66(\mathrm{~d}, 3)$, and $62.15(\mathrm{~s}, 0.4)$) should belong to A_{1}. The molecule of A_{1} is thus appreciably symmetrical, having a methyl and a quaternary carbon atom. The same mixture gave a ${ }^{1} \mathrm{H}$ NMR spectrum in which was observed a distinct, sharp singlet ($\delta_{\mathrm{H}} 1.08$) for the methyl protons in the background of broad, complex multiplet ($\delta_{\mathrm{H}} 1.0-2.2$). This indicated that the methyl group was one of the substituents on the quaternary carbon atom. Careful examination of all the possible bridge-

head methyl derivatives of 19 reasonably stable tricyclodecanes ${ }^{4,6}$ showed that 10 -methylperhydrotriquinacene (10methyltricyclo[5.2.1.04,10]decane (3)) was the only possible structure corresponding to the ${ }^{13} \mathrm{C}$ and the ${ }^{1} \mathrm{H}$ NMR spectra. It has been found previously ${ }^{1}$ that A_{1} was inert toward bromination under the conditions under which methyladamantanes, homoadamantane, and 4 -homoisotwistane (tricyclo $\left[5.3 .1 .0^{3,8}\right]$ undecane) were highly reactive. A perhydrotriquinacene structure for A_{1} is consistent with this result, in view of the relative stabilities of bridgehead cations of bicyclo[3.3.0]octane, bicyclo[3.3.1]nonane, adamantane, and homoadamantane, as evidenced from the solvolysis rates of their arenesulfonates and halides. ${ }^{7}$ Assignment of the ${ }^{13} \mathrm{C}$ NMR signals of 10 -methylperhydrotriquinacene (3) as shown on Table I could be done unequivocally only on the basis of its molecular structure with $C_{3 v}$ symmetry.
Fraction A gave $13{ }^{13} \mathrm{C}$ NMR signals. ${ }^{1}$ Subtraction of the three for the propellane 2 and the four for 10 -methylperhydrotriquinacene (3) left six to be allotted to $\mathrm{A}_{3}: \delta_{\mathrm{C}} 27.65(\mathrm{q}, 1)$, $31.58(\mathrm{t}, 4), 39.31(\mathrm{t}, 2), 45.35(\mathrm{~d}, 2), 51.36(\mathrm{~s}, 0.4), 61.66(\mathrm{~d}, 1)$. ${ }^{1} \mathrm{H}$ NMR spectrum of the fraction contained two sharp singlets at $\delta_{\mathrm{H}} 1.05$ and 1.08 . Since the latter signal arose from A_{1} as stated above, the former should belong to A_{3}. These NMR spectra indicated that A_{3} also has a methyl substituted on a bridgehead. However, no bridgehead-methylated tricyclodecane ${ }^{6}$ exists that satisfies the molecular symmetry and structural features required by the NMR spectra. The intensity of the triplet carbon signal at $\delta_{\mathrm{C}} 31.58$ was quite large when compared to those of other signals. This made us suspect that the signal might arise from two different kinds of carbon atoms which had coincidentally the same chemical shifts. Then, by assuming seven kinds of carbon atoms, four structures (4-7) with C_{s} symmetry are consistent with the spectra. Similarity in the mass spectra of A_{1} and $\mathrm{A}_{3}{ }^{1}$ strongly suggested the same skeletal structure for both compounds. 1-Methylperhydrotriquinacene (4), therefore, would be the best candidate for A_{3}. Instability of the tricyclodecane skeletons of ${ }_{5-7}{ }^{6 \mathrm{~b}}$ also seems contradictory to the relatively slow isomerization, and hence the relatively high stability, of A_{3}. In order to establish the structure 4 for A_{3}, an independent synthesis of 4 was made via the unambiguous route shown below.

Reaction ${ }^{8}$ of 4-methylcyclohexanone (8) with the dicarbene generated from dimethyl N, N^{\prime}-dinitroso- N, N^{\prime}-tetramethylenedicarbamate (9$)^{9}$ gave 4 -methylbicyclo[5.2.1]decan-10-one (10). ${ }^{10}$ Golay GC-MS showed 10 to be an ca. 6:4 mixture of the two isomeric ketones 10 x and $10 \mathrm{n} .{ }^{10}$ The ketone mixture 10 was converted to the corresponding tosylhydrazone (11) in the usual manner, ${ }^{8}$ and the sodium salt of 11 was pyrolyzed ${ }^{8}$ to give 1-methylperhydrotriquinacene (4). The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 thus synthesized was in complete agreement with that of A_{3} described above. The VPC retention times and the

Table I. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts of [3.3.3]Propellane (2) and 10- and 1-Methylperhydrotriquinacene (3 and 4)

compound	$\begin{aligned} & \text { registry } \\ & \text { no. } \end{aligned}$	${ }^{13} \mathrm{C}$ NMR chemical shifts, δ_{C} (multiplicity, rel intensity; assignment)
2	51027-89-5	$\begin{aligned} & 24.57(\mathrm{t}, 3 ; \mathrm{C}-3,-7,-10), 40.32(\mathrm{t}, 6 \\ & \mathrm{C} 02,-4,-6,-8,-9,-11), 60.33 \\ & \text { (s, 0.8; C-1, -5) } \end{aligned}$
3	64822-64-6	$\begin{gathered} 28.25(\mathrm{q}, 1 ; \text { methyl), } 31.50(\mathrm{t}, 6 ; \mathrm{C}-2 \\ -3,-5,-6,-8,-9), 52.66(\mathrm{~d}, 3 ; \\ \mathrm{C}-1,-4,-7), 62.15(\mathrm{~s}, 0.4 ; \mathrm{C}-10) \end{gathered}$
4	64822-63-5	$\begin{aligned} & 27.65(\mathrm{q}, 1 ; \text { methyl), } 31.58(\mathrm{t}, 4 ; \mathrm{C}-3 \\ & -5,-6,-8), 39.31(\mathrm{t}, 2 ; \mathrm{C}-2,-9) \\ & 45.35(\mathrm{~d}, 2 ; \mathrm{C}-4,-7), 51.36(\mathrm{~s}, 0.4 ; \\ & \mathrm{C}-1), 61.66(\mathrm{~d}, 1 ; \mathrm{C}-10) \end{aligned}$

mass spectra of both compounds, as measured on the Golay GC-MS, were also identical.

Assignment of the two triplets ($\delta_{\mathrm{C}} 31.58$ and 39.31) in the ${ }^{13} \mathrm{C}$ NMR spectrum of 1 -methylperhydrotriquinacene (4) may be made by reference to the effects of methyl substitution on the chemical shifts for cis-bicyclo[3.3.0]octane. ${ }^{11}$ Introduction of an endo-2-methyl into the bicyclooctane caused chemical shift changes by +4.7 ppm (downfield) on $\mathrm{C}-1$ bridgehead, +6.8 on $\mathrm{C}-3,-1.8$ on C-4, and +1.5 on $\mathrm{C}-6$ and $\mathrm{C}-7$, but no effect on the C-5 bridgehead. By combination of these increments with the chemical shifts for 1 -methyl-cisbicyclo[3.3.0]octane under an assumption of simple additivity and with an approximation of the effect of methylene by that of methyl, ${ }^{12}$ the chemical shifts of C-2 and C-3 in 4 are calculated to be $\delta_{\mathrm{C}} 41.6(=41.9-1.8+1.5)$ and $34.2(=25.9+6.8$ $+1.5)$, respectively. Then, it seems reasonable to assign the experimental quadruple-intensity signal at $\delta_{\mathrm{C}} 31.58$ to $\mathrm{C}-3$ (and C-8) and the double-intensity one at $\delta_{\mathrm{C}} 39.31$ to $\mathrm{C}-2$ (and $\mathrm{C}-9)$. The $\delta_{\mathrm{C}} 31.58$ signal also should be assigned necessarily to $\mathrm{C}-5$ and $\mathrm{C}-6$ on consideration of signal intensity.

Similar treatment for $\mathrm{C}-1$ and $\mathrm{C}-10$ birdgeheads of $1-$ methylperhydrotriquinacene (4) gave the calculated $\delta_{\mathrm{C}} 49.8$ $(=49.8+(2 \times 0.0))$ and $60.3(=50.9+2 \times 4.7))$, respectively, thus reproducing well the experimental signals, $\delta_{\mathrm{C}} 51.36$ and 61.66. The same procedures were applied to 10 -methylperhydrotriquinacene (3) to give the chemical shifts: $\delta_{\mathrm{C}} 50.9$ $(=50.9+(2 \times 0.0))$ for $\mathrm{C}-1,34.2(=25.9+6.8+1.5$, or $=34.5$ $-1.8+1.5)$ for $\mathrm{C}-2$, and $59.2(=49.8+(2 \times 4.7))$ for $\mathrm{C}-10$. These figures are in fair agreement with the corresponding experimental chemical shifts: $\delta_{\mathrm{C}} 52.66$ for $\mathrm{C}-1,31.50$ for $\mathrm{C}-2$, and 62.15 for $\mathrm{C}-10$. The result is considered to render additional support to the structure determination of A_{1}.

According to a prediction of the rearrangement pathways on the basis of calculated thermodynamic stabilities of possible tricycloundecane and methyltricyclodecane isomers, ${ }^{4}$ methylperhydrotriquinancenes were considered to be one of the most important intermediates in methyl extrusion processes appearing in the later stage of rearrangement. In contrast to this, routes via methylisotwistanes were energetically less favorable compared to those via methylperhydrotriquinacenes. Thus the existence of the latter compounds in the rearrangement product mixture is fully consistent with the theoretical study.

Experimental Section

Isolation of [3.3.3]Propellane (2). A mixture of $60 \mathrm{~g}(0.4 \mathrm{~mol})$ of exo-cis-2,3-tetramethylenenorborane (1), ${ }^{1} 5.4 \mathrm{~g}(0.04 \mathrm{~mol})$ of anhydrous aluminum chloride, and 400 mL of methylene chloride was heated under reflux for 3 h . The reaction mixture was poured onto 500 mL of ice-water, and the organic layer was separated. The aqueous layer was extracted once with 50 mL of methylene chloride. The combined organic layer and the methylene chloride extract were
washed successively with 2% hydrochloric acid, a saturated sodium bicarbonate solution, and water and dried over anhydrous calcium chloride. Concentration of the solution gave 59 g (98% yield) of the residue which was analyzed on conventional VPC to contain 9.0% of fraction A. This fraction was separated on the preparative VPC: retention time, 7.5 min ; column, $3 / 8$ in. $\phi \times 10 \mathrm{ft}$, packed with 30% Carbowax 20 M on Chromosorb W-AW, at $150^{\circ} \mathrm{C}$; He pressure, $22 \mathrm{lb} / \mathrm{in} .{ }^{2}$; injection port temp, $200^{\circ} \mathrm{C}$; detector temp, $240^{\circ} \mathrm{C} ; 300 \mu \mathrm{~L}$ of the sample being injected every time.

A part ($4.5 \mathrm{~g}, 0.03 \mathrm{~mol}$) of the fraction thus obtained was then heated under reflux with $18.0 \mathrm{~g}(0.12 \mathrm{~mol})$ of trifluoromethanesulfonic acid in 225 mL of methylene chloride for 16 h . The reaction was quenched by being poured onto 200 mL of ice-water and treated similarly as above to give a dry methylene chloride solution. Concentration of the solution afforded 4.5 g (quantitative yield) of the residue comprising the isomerization products. The residue was fractionated on the preparative VPC, and the first-eluted fraction (fraction A) was recovered to give 0.72 g of crude [3.3.3]propellane (2). Purification with slow sublimation in vacuo $(\sim 200 \mathrm{~mm})$ yielded 0.58 $\mathrm{g}(0.97 \%$ yield based on 1$)$ of 2 with 94% purity: mp $116-117^{\circ} \mathrm{C}$; IR (neat) $2920,2850,1460,1440,1290,1230,1200,1160,1100,990,970$, $900 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s})$. The mass spectrum ${ }^{1}$ and the ${ }^{12} \mathrm{C}$ NMR chemical shifts (Table I) were in good agreement with those ${ }^{3}$ of an authentic specimen.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18}$: C, 87.92; H, 12.08. Found: C, $87.9 ; \mathrm{H}$, 12.1.

4-Methylbicyclo[5.2.1]decan-10-one (10). To a solution of 24.0 $\mathrm{g}(0.21 \mathrm{~mol})$ of 4 -methylcyclohexanone (8) in 200 mL of a $50: 50 \mathrm{v} / \mathrm{v}$ mixture of tetrahydrofuran and methanol kept at $2-5{ }^{\circ} \mathrm{C}$ was added 2.0 g of anhydrous potassium carbonate and then dropwise with efficient stirring in a period of 7 h a solution of $59.7 \mathrm{~g}(0.23 \mathrm{~mol})$ of dimethyl N, N^{\prime}-dinitroso- N, N^{\prime}-tetramethylenedicarbamate (9) in 1 L of the THF-methanol mixture. The reaction was stirred at the same temperature for an additional 5 h and set aside overnight at ambient temperature. Solid maiters were filtered off and the filtrate was concentrated. The residue was extracted with petroleum ether and the solvent was evaporated off. Fractional distillation of the residue gave $7.9 \mathrm{~g}(21 \%$ yield $)$ of a mixture of isomeric 4 -methylbicyclo[5.2.1]decan-10-one (10), bp $68-70^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.46 ; \mathrm{H}, 10.92$. Found: C, $79.3 ; \mathrm{H}$, 11.0.

The mixture was analyzed on Golay GC-MS to comprise two major constituents (95% of the combined peak areas) in a $58: 42$ ratio, which were separable also or the preparative VPC. The earlier-eluted, more-abundant component: IR (neat) 2960, 2920, 2860, 1730, 1450, $1370,1310,1190,1140 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 24.20(\mathrm{t}, 2), 28.18$ (d, 1), 32.49 (q, 1), 34.44 (t, 2), 35.98 (t, 2), 45.88 (d, 2), 232.04 (s, 0.3); mass spectrum (m / e, rel intensity) $166\left(43, \mathrm{M}^{+}\right.$), 151 (32), 112 (53), 110 (32), 109 (33), 97 (37), 96 (37), 95 (43), 84 (34), 83 (33), 82 (32), 81 (50), 68 (32), 6 ? (43), 55 (100), 54 (32), 41 (55). The later-eluted component: IR (neat) $2960,2940,2890,1740,1480,1460,1440,1380$, $1320,1140 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 18.03(\mathrm{q}, 1), 24.77(\mathrm{t}, 2), 29.64$ ($\mathrm{t}, 2$), $30.62(\mathrm{~d}, 1), 31.43(\mathrm{t}, 2), 45.56(\mathrm{~d}, 2), 230.09(\mathrm{~s}, 0.4)$; mass spectrum (m / e, rel intensity) $166\left(44, \mathrm{M}^{+}\right.$), $123(38), 112(60), 110(38), 109$ (38), 96 (40), $95(47), 84(37), 83(40), 82(38), 81(62), 68(37), 67(50)$, 55 (100), 54 (34), 41 (61).

4-Methylbicyclo[5.2.1]decan-10-one Tosylhydrazone (11). A solution of $4.3 \mathrm{~g}(0.026 \mathrm{~mol})$ of the mixture of isomeric 4 -methylbi-cyclo[5.2.1]decan-10-ones prepared above, $5.3 \mathrm{~g}(0.028 \mathrm{~mol})$ of p toluenesulfonylhydrazine, and 1.0 mL of 35% hydrochloric acid in 200 mL of absolute ethanol was heated under reflux for 3 h , and the reaction was set aside overnight at ambient temperature. Concentration of the solution and recrystallization of the residue from an ethanolether ($50: 50$) mixture gave 3.2 g (37% yield) of 4 -methyl-bicyclo[5.2.1]decan-10-one tosylhydrazone (11): mp $171-172^{\circ} \mathrm{C}$; IR (Nujol) 3200 (br), $1600,1170 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 64.65 ; \mathrm{H}, 7.84 ; \mathrm{N}, 8.38 ; \mathrm{S}, 9.57$. Found: C, 64.4; H. 7.7; N, 8.6; S, 9.8 .

1-Methylperhydrotriquinacene (4). To 66 g of molten acetamide kept at $90-95^{\circ} \mathrm{C}$ was added $1.6 \mathrm{~g}(0.070 \mathrm{~mol})$ of sodium in small portions. After dissolution of the sodium, $5.5 \mathrm{~g}(0.017 \mathrm{~mol})$ of 4-methyl-bicyclo[5.2.1]decan-10-one tosylhydrazone (11) was added to the solution with efficient stirring, and the reaction temperature was raised to $175^{\circ} \mathrm{C}$ in a period of 30 min . The reaction was stirred for 5 min at the same temperature and then cooled down to $90^{\circ} \mathrm{C}$.

To the reaction mixture was added dropwise 55 mL of water, and the resulting mixture was set aside to cool at ambient temperature. The reaction mixture was extracted with three $50 \cdot \mathrm{~mL}$ portions of n-pentane, and the combined pentane extracts were washed with water and dried over anhydrous calcium chloride. Evaporation of the
solvent and purification of the residue with the preparative VPC gave 1.7 g (67% yield) of a pure sample of 1 -methylperhydrotriquinacene (4): mp 33-34 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 0.9-2.2$ (complex $\mathrm{m})$; mass spectrum (m / e, rel intensity) $150\left(22, \mathrm{M}^{+}\right.$), 135 (15), 107 (30), 95 (15), 94 (100), 81 (44), 80 (21), 79 (22), 67 (14), 41 (14).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18}$: C, 87.92; H, 12.08. Found: C, 87.7; H. 12.2.

Acknowledgment. The authors thank Professor Roger Alder, University of Bristol School of Chemistry, for the information of the ${ }^{13} \mathrm{C}$ NMR and the mass spectra of [3.3.3]propellane prior to publication.

Registry No.-1, 32789-29-0; 8,589-92-4; 9, 40002-44-6; 10, exo$\mathrm{Me}, 23109-52-6 ; 10$, endo-Me, 23109-50-4; 11, 68796-73-6.

References and Notes

(1) N. Takaishi, Y. Inamoto, K. Tsuchihashi, K. Yashima, and K. Aigami, J. Org. Chem., 40, 2929 (1975).
(2) Furthermore, a 5 molar catalyst in 24 h reaction also caused practically no reaction, and only $16.5 \% 2$ disappeared with as much as 25 molar catalyst in 6 h .
(3) R. Alder, private communication
(4) E. Osawa, K. Aigami, N. Takaishi, Y. Inamoto, Y. Fujikura, Z. Majerski, P. v. R. Schleyer, E. M. Engler, and M. Farcasiu, J. Am. Chem. Soc., 99, 5361 (1977).
(5) D. Ginsburg, Acc. Chem. Res., 2, 121 (1969); 5, 249 (1972); 7, 286 (1974); Tetrahedron, 30, 1487 (1974); R. L. Cargill, T. E. Jackson, N. T. Peet, and C. M. Pond, Acc. Chem. Res., 7, 106 (1974).
(6) (a) H. W. Whitlock, Jr., and M. W. Siefken, J. Am. Chem. Soc., 90, 4928 (1968); (b) E. M. Engler, M. Farcasiu, A. Sevin, J. M. Cense. and P. v. R. Schleyer, ibid., 95, 5769 (1973).
(7) R. C. Bingham and P. v. R. Schleyer, J. Am. Chem. Soc., 93, 3189 (1971).
(8) L. A. Paquette, G. V. Meehan, and S. J. Marshall, J. Am. Chem. Soc., 91, 6779 (1969): T. Jacobson, Acta Chim. Scand., 21, 2235 (1967): J. W. Baum and C. D. Gutsche, J. Org. Chem., 33, 4312 (1968).
(9) C. M. Samour and J. P. Mason, J. Am. Chem. Soc., 76, 441 (1954)
(10) C. D. Gutsche and J. W. Baum, Org. Prep. Proc., 1, 35 (1969); Chem. Abstr., 71, 49373d (1969).
(11) J. K. Whitesell and R. S. Matthews. J. Org. Chem., 42, 3878 (1977).
(12) N. Takaishi, Y. Inamoto, and K. Aigami, Chem. Lett., 1185 (1973); J. Org. Chem., 40, 276 (1975).

Photochemical Reaction of Radical $\cdot \mathrm{CMe}_{2} \mathrm{X}$ with Toluene ${ }^{1}$

Yoshiro Ogata,* Katsuhiko Takagi, and Eiji Hayashi
Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464 Japan

Received May 22, 1978
In our previous paper, ${ }^{2}$ photodecomposition of ethyl chloroacetate in benzene was found to give a ring substitution product, ethyl phenylacetate, suggesting a radical substitution reaction.

These types of ring-substituted products were not observed in the thermolysis of azo compounds. ${ }^{3}$ To our knowledge, there is only one available report on the photoinduced decomposition of azo compounds in aromatic solvents. ${ }^{4}$

Herein, we report the photodecomposition of AIBN and MAIB in toluene showing a parallelism between the photochemical behavior of MAIB, AIBN, and α-chloroisobutyrate in toluene.

Results and Discussion

Photodecomposition of α, α^{\prime}-Azobis(isobutyronitrile) (AIBN) in Toluene. Irradiation of 0.10 M AIBN in toluene. under N_{2} for 4 h gave a mixture ($\sim 3 \%$) of $\alpha-p$-tolyliso-

